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Twin-roller steel strip casting may offer advantages with respect to classic continuous-casting hot-rolling
processes. Only a few studies have reported control aspects of this process, and, although successful, little
attention has been given to the interactions between variables. In this study, the derivation of a 3 × 3
linearized multivariable model for process control purposes that has been proposed in previous investi-
gations is presented. The model was simplified to a 2 × 2 plant. The process was found to be highly
interactive and nonlinear, involving time delays. An analysis of interactions and their implications for
process control is also presented. The multivariable model proposed was successfully used for multivari-
able control design in subsequent works.
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1. Introduction

Continuous strip casting offers industry the opportunity to
reduce production costs, energy consumption, and the loss of
material by partial or total elimination of subsequent shaping
stages. The capital cost will also be reduced as a result of the
installation of low-head machines and the elimination of rough-
ing stands in strip mills (Ref 1, 2). The need for highly respon-
sive interactive control is a consequence of the reduction in
storage capacity of the strip caster in comparison with tradi-
tional processes. These processes can also bring an improve-
ment in uniformity quality and new properties to the final steel.

The twin-roller strip-casting process is suitable to directly
cast a thin strip with a thickness between 1 and 5 mm, and even
thinner (Ref 3). However, successful implementation is very
much dependent on the highly interactive processes of heat and
fluid flow, and, therefore, on the control of heat and flow
extraction. The solidification rate has to be controlled to allow
good mechanical properties of the final product, and to avoid
surface cracking and faults in the structure of the solidified
steel as well as the so-called breakout problem.

Various works on the modeling and control of twin-roller
casters have been reported in the literature. Although success-
ful, little attention has been given to the multivariable aspect of
the process (i.e., the interaction between loops) (Ref 4-13).
Some authors claim to have implemented successful controls;
however, no details were given (Ref 4, 5). Several single-loop
controllers have been proposed: the strip thickness was con-
trolled via a force control (Ref 6) and by using a gain schedule

proportional plus integral (PI) controller (Ref 6, 7), while fuzzy
controllers have been proposed for molten steel levels (Ref 8,
9). More recent works have proposed a two-level control (Ref
10, 11). Three local controllers are designed for the molten
steel level, roll gap, and roll speed. Interactions are treated as
disturbances from the other systems; however, because this is
not enough to achieve a constant roll separation force, a high-
level (supervisory) controller is then required.

In previous investigations within the Department of Auto-
matic Control and Systems Engineering (ACSE) of the Uni-
versity of Sheffield, some nonlinear static relations have been
derived and validated in a real-life caster (Ref 14). The process
was found to be highly interactive and nonlinear with the pres-
ence of unbreakable delay-integrator loops. Consequently, a 3
× 3 linearized model suitable for control analysis and design
was derived. Nonetheless, in the early works only diagonal
controllers were proposed. The model was simplified to a 2 ×
2 size on a justified basis, and a time-domain (step response)
multivariable analysis was performed (Ref 15). One of the
conclusions was the multivariable approach becomes crucial
due to the high level of interactions. A full multivariable analy-
sis and the application of several multivariable control tech-
niques, with the aim of reducing interactions, were performed
(Ref 16). The multivariable control techniques used were the
Owens first-order approximations (Ref 17), an H�-optimal
control for nominal performance (Ref 18), and the multivari-
able Smith predictor of Alevisakis and Seborg (Ref 19). The
effects of the nonlinearities were addressed by changing the
operating conditions. A real-time simulator based on the model
was also built (Ref 20).

Shell growth is described by Eq 1, which is one of the main
contributions of earlier investigations on the twin-roller caster
at the University of Sheffield (Ref 14, 20). The shell growth
was modeled using similar principles and leads to similar re-
sults, although different representations have been used (Ref 6,
7, 10-12). However, the present work is concerned with the
model of the cross-coupling elements, such as molten steel
level (or molten steel input flow) to roll separation force, and,
hence, the interaction effects that have not been specifically
addressed. The derivation of the multivariable 3 × 3 model for
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the control of the twin-roller strip-casting process, as well as
the simplification to a 2 × 2 model, is presented. The interac-
tions are analyzed via some of their multivariable characteris-
tics, such as multivariable poles and zeros, interaction ratios,
singular values, and minimized condition numbers. The impli-
cations for process control are discussed.

The validation of the model in a real-life caster is not pre-
sented here (Ref 14). However, the model was calibrated ac-
cording to a pure static model that has been in use at an in-
dustrial site and was experimentally validated. This model has
been used satisfactorily, and it is considered to be a good
approximation of the plant during steady state. The real-time
simulator was validated with real-life data (Ref 20).

2. Twin-Roller Strip-Casting Process

Twin-roller strip casting consists of feeding molten metal
directly into a gap between two horizontal cooling rollers that
are rotating in opposite directions in such a way that the melt
is led through the gap (Fig. 1). The gap between rollers (xg)
approximates the thickness of the desired product. A pool of
molten steel is formed within the gap between the rollers as the
melt is fed into the system. The steel then solidifies progres-
sively along the arc of contact with the cooling roller surface.
The molten and solid steel, in an idealized manner, are sepa-
rated by a line forming a shell, as shown in Fig. 1. The point at

�(j�) maximum singular value
�(M) maximum singular value of a matrix M
�(j�) minimum singular value
�(M) minimum singular value of a matrix M
� bulk modulus of hydraulic fluid for gap setting
� denotes small-perturbation signal, parameter

mismatch
� roller angular velocity
� complex plane real axis, singular value
� steel stress p.u. filament compression between

rollers
�1 steel density
�2 steel resistivity
	 angle subtended by any point in the solidification

shell at roller center
	k angle subtended by the kiss point at roller center
	l angle subtended by the melt steel surface at roller

center

r temperature of heat sink within the rollers

s temperature of molten steel
a−1 distance separating the inside surface of the shell

from internal heat sink �

1

r0 − R

aij(s) (i,j) element of the process TFM G(s)
ACSE automatic control and systems engineering
B shell growth rate �


s − 
r

�1�2HL�r0 − R�

b speed-dependent solidification rate �


s − 
r

�1�2HL�r0 − R��act

cond(M) condition number of matrix m
F roller separation force
D(s) polynomial common denominator of the aij

G(s) process TFM
H1(s) gap setting hydraulic circuit transfer function from

valve displacement to gap
H2(s) gap setting hydraulic circuit transfer function from

valve displacement to roller separation force
HL latent heat of molten steel
kdy� steady-state gain from roller velocity to level height
kdyg steady-state gain from gap to level height

kdyqi steady-state gain from melt input flow to level
height

kF� steady-state gain from roller velocity to roller
separation force

kFg steady-state gain from gap to roller separation
force

kFk steady-state gain from kiss height to roller
separation force

kk� steady-state gain from roller velocity to kiss
height

kky steady-state gain from level height to kiss
height

mc gap-setting hydraulic cylinder mass
me meniscus width (xg + 2xk)
mr roller mass
NP nominal performance
NS nominal stability
Po supply pressure for gap-setting hydraulic circuit
Ps, Pr pressure at the gap-setting hydraulic cylinder
Q(s) open-loop TFM (section 4), interconnection

matrix (sections 5 and 6)
qc flow at the gap-setting hydraulic cylinder
qd flow at the gap-setting valve exit
qi melt input flow
r distance from a given point in the solidification

shell to the roller center
R roller radius
Red% percentage of reduction of thickness
rk distance from kiss point in the solidification

shell to the roller center
Rl gap-setting hydraulic valve leakage conductance
Rv

−1 gap-setting hydraulic valve conductance
SP smith predictor
T time delay
TFM transfer function matrix
Vs, Vr compression and expansion volumes of

hydraulic fluid for gap setting
xb movement of gap setting hydraulic circuit

support
xc movement of gap setting hydraulic circuit

cylinder
xg gap between rollers
xk steel thickness at the kiss height
Yk kiss point height
Yl melt level height

Nomenclature
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which the lines touch each other is called the kiss point. The
solid material is compressed by the rollers in the nip region, as
shown in Fig. 1. Thus, a reaction force, called the roller sepa-
ration force, is generated. The solid strip is produced at the exit
of the rollers.

The kiss point height might be changed by varying (a) the
roller gap, (b) the melt pool level, or (c) the roller speed. As the
roller speed or the roller gap increases, or the pool level de-
creases, the kiss point is lowered. As the kiss point travels
down, the problem of breakout might occur. This occurs when
the kiss point does not actually exist because solidification has
not been completed before molten steel leaves the rollers. In
the present work, it is assumed that the kiss point is above the
equator of the rollers.

3. Model of the Process

3.1 Shell Growth

In this section, the steady-state solution of the kiss height is
derived via the solidification process to obtain the local gains
between the different process variables.

The solidification process was simplified by assuming that
the molten steel has a uniform temperature and solidifies
abruptly upon the loss of latent heat, and by performing a mass
balance on the solid within an infinitesimal cell at a general
angle. Under these assumptions and simplifications, for an
abrupt solidification interface, it is considered that the shell
thickness (R − r) is described by the partial differential equation:

�r

�t
= ���r

�	
+

b

1 + a�r − R�� (Eq 1)

where r is the distance from the shell to the center of the roller,
and 	k � 	 � 	l are as in Fig. 1. The speed-dependent solidi-
fication rate is given by:

b =

s − 
r

�1�2HL�r0 − R��act

and 
s is the temperature of molten steel, 
r is the temperature
of heat sink within the rollers, �1 is the steel density, �2 is the
steel resistivity, HL is the latent heat of molten steel, �act is the
actual angular velocity, and

a =
1

r0 − R

where a−1 is the distance separating the inside surface of the
shell from the internal heat sink.

This equation is fundamental to a wide range of moving-bed
processes (e.g., sintering, chain-grate stokers, rotary kilns, tu-
bular reactors, and mechanized coal cutting) (Ref 21, 22), and,
as mentioned, it is one of the main contributions from earlier
studies on twin-roller strip casting (Ref 14, 20). Equation 1
emerges from considering the mass balance of a solid infini-
tesimal spatial cell in which the rate of accumulation of the
solid is equated to the difference of inflow and outflow around
the rollers plus the rate of deposition from the extraction of
latent heat (the latter is later assumed constant, but Eq 1 allows
the rate of cooling to be modulated by shell thickness via
parameter a) (Ref 23).*

* The thermodynamics in this model are therefore confined to con-
duction and latent heat only; similar simplifications are often adopted,
e.g., in distillation models.

Fig. 1 Top-feeding, twin-roller, strip-casting process
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The shell boundary conditions are defined at the molten
surface to be r = R, and 	 = 	l. At the kiss point, shell boundary
conditions are defined as r = rk and 	 = 	k. It is possible to
rewrite b in the form:

b =
B

�act
(Eq 2)

where B is a constant given by:

B =

s − 
r

�1�2HL�r0 − R�

In principle, Eq 2 can be used to calculate B, but (r0 − R) is a
conceptual thickness. It is more practical, however, to estimate
the parameter b via calibration of theoretical and practical re-
sults.

3.2 Approximated Steady-State Formula for the Kiss Point

The exact analytic solution of the partial differential equa-
tion (Eq 1) for the shell solidification is not possible because it
involves the trigonometric function cos	k. For small values of
	k, it is possible to use the Taylor approximation:

cos 	k ≈ 1 −
	k

2

2

This allows the analytic steady-state solution for the kiss height
(Yk) to be derived under conditions of constant 	l, �, b, and xg.
For the sake of simplicity, it is assumed that the thickness of
the roller surface has little effect on heat conduction to the heat
sinks within the rollers (i.e., a [r − R] « 1). Thus, under steady-
state conditions (�r/�t � 0) Yk solution is:

Yk = −b +�b2 + 2�R +
xg

2 ��b	l −
xg

2 � (Eq 3)

The full derivation of this is presented in Appendix A. It is
possible to linearize Eq 3 by the small perturbation model
technique around an operating point in the following manner:

�Yk ≅ ��
�Yk

���
�,xg,Yl

+ �xg

�Yk

�xg
�

�,xg,Yl

+ �Yl

�Yk

�Yl
�

�,xg,Yl

(Eq 4)

where � denotes small deviation.
The following symbols will be used to represent the con-

stants produced by the substitution of the operating conditions
on the partial derivatives:

kk� =
�Yk

���
�,xg,Yl

, kkg =
�Yk

�xg
�

�,xg,Yl

and kkY =
�Yk

�Yl
�

�,xg,Yl

where kk�, kkg, and kky are the static gains from kiss height to
angular velocity, roller gap, and level height, respectively.
Thus, Eq 4 can be rewritten as:

�Yk = ��kk� + �xgkkg + �YlkkY (Eq 5)

3.3 Steady-State Formula for Roller Separation Force

The roller separation force is a result of the compression of
the solidified steel by the rollers within the nip region (Fig. 2).
The solidified steel is compressed from its width (in the cross-
section direction) at the kiss point to that at the roller exit (i.e.,
to xg). As a simplification of what in reality is a very complex
mechanical, thermodynamic, and metallurgic process, the roll
separation force (F) is considered to be proportional to the
integrated compressive strain within the nip-point region. Uni-
form distribution of steel along the rollers is also assumed.
Thus:

F = L��
0

	k
2�xk − x�

�xg + 2xk�
R cos 	d	 (Eq 6)

where 2(xk − x) is the loss of thickness of solid steel at a
particular point within the nip region, when 	 � 0 and x � xk,
and when 	 � 	k and x = 0; then (xg + 2xk) is the width at the
kiss point (Fig. 2), � is the stress per unit filament between
rollers for steel, and R and L are the roller radius and length,
respectively. L is assumed to be equal to 1 m. Therefore, the
strip width is unity and is eliminated from force.

Using the approximations:

xg « xk,

	k « 1.0 → cos 	 ≈ 1, and

xk ≅
Yk

2

2R
(Eq 7)

Fig. 2 Strip-casting process showing the parameters used in (Eq 6)
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(proof of Eq 7 can be found in Appendix B) the following
expression is obtained:

F =
2�Yk

3

3xgR
(Eq 8)

(see Appendix C for proof of Eq 8). Equation 8 can also be
linearized around an operating point by the small perturbation
technique:

�F = �Yk

�F

�Yk
�

xg,Yk

+ �xg

�F

�xg
�

xg,Yk

(Eq 9)

Using the following symbols it can be expressed as:

kFk =
�F

�Yk
�

xg,Yl

and kFg =
�F

�xg
�

xg,Yl

(Eq 10)

where kFk and kFg are the static gains from roller separation
force to kiss height and roller gap, respectively.

Hence, Eq 9 can be rewritten as:

�Fk = �YkkFk + �xgkFg

Equation 10 gives the relations �F/�xg and �F/�Yk. These are
not considered to be dynamic relations, and only the steady-
state relations are used.

3.4 Force-Velocity Model

3.4.1 Steady-State Relation. The steady-state relation
from the roller angular velocity (�) to the kiss point height (Yk)
is given by kk� for small perturbations, which is obtained by
partially differentiating the nonlinear approximate steady-state
solution of Yk (Eq 3) with respect to � (Eq 4, 5).

The small-perturbation steady-state relation from Yk to F is
given by kFk, which is obtained by partially differentiating Eq
8 with respect to Yk (Eq 9, 10). Therefore, the small-
perturbation steady-state relation from � to F is kk�kFk.

3.4.2 Dynamics. When a small perturbation step is applied
on �, all of the points on the shell change their direction of
travel. The kiss point will move vertically until the last point on
the shell arrives at the new kiss point. Hence, the response of
Yk to a step on � can be considered to be a ramp of duration

T =
	l − 	k

�
(Eq 11)

where 	k = tan−1 � Yk

R +
xg

2
�

see Fig. 3, note that the delay time (T) is speed-dependent.
The dynamics between F and � can be described by (as has

been done for related processes; Ref 15, 16, 20, 21):

GF��s� = kF�

1 − e−sT

Ts

where kF� is as given above. Note these dynamics are defined
only for the steady state under small signals.

3.5 Roller Geometry

From the roller geometry, it is possible to obtain both the
steady-state relation and the dynamics from qi, xg, and � to Yl

(Fig. 4). For simplicity, the relation for the time derivative of Yl

is obtained and is given by:

Ẏl =
qi − qo

L�xg + 2R − 2�R2 − Yl
2�

where qo is the output flow.
Substituting qo, the following expression is obtained:

Ẏl =
qi − �RxgL

L�xg + 2R − 2�R2 − Yl
2�

Again, this expression can be linearized in steady state around
an operating point as follows:

�Ẏl = �qikdYq + ��kdY� + �xgkdYg + �YlkdYY

where kdy� and kdyq are the static gains from the angular ve-
locity and molten steel input flow to the first derivative of the
level height, respectively.

In the following, the steady-state gain

kdYY =
�Yl

�Ẏl
�

Steady State

will be assumed to be zero. The dynamics between Yl and its
time derivative is considered to be only an integrator. Thus, the
dynamics are as follows:

Yl�s� = �kdYqi
qi�s� + kdY���s��

1

s

3.6 Level-Force Dynamics

A step on Yl under small-perturbation conditions would
cause a delayed step on Yk with constant � and xg. Thus, the
dynamics are given by:

Fig. 3 Kiss height response to a step on �act
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GFY�s� = kFYe−sT

where kFY � kkYkFk, and kFk is as in Eq 9 and 10, kky is as
given in Eq 4, and T is given by Eq 10.

3.7 Gap Dynamics

The gap dynamics are mainly governed by the hydraulic
system, which positions the caster rollers. After linearization
around an operating point of the dynamics of the hydraulic
system, the block diagram (Fig. 5) is obtained. In Fig. 5, the
following symbols are used: xb is the movement of the support;
xc is the movement of the cylinder; P0 is the supply pressure;
d is the valve spool displacement; qd is the flow at the valve
exit; qc is the flow at the cylinder; ql is the valve leakage flow;
Ps and Pr are the pressures in the cylinder; and Vs and Vr are the
compression and expansion volumes of hydraulic fluid, respec-
tively, and they account for the compressibility of the fluid.

The transfer function of the diagram in Fig. 5 is given by:

xg�s� = Hl�s�d�s� + H2�s�F�s� (Eq 12)

where Hl(s) � xg(s)/d(s) and H2(s) � xg(s)/F(s).

(See Appendix D for the partial derivatives for linearization of
the nonlinear static relations used in this section.)

4. Multivariable Model

From the foregoing analysis, the 3 × 3 small-perturbation
multivariable model of Fig. 6 is obtained with the inputs being
spool valve displacement (�d), roller velocity (��), and input
flow (�qi). The outputs include the roller gap (�xg), the roller
separation force (�F), and the pool level (�Yl). (See Appendix
E for a full expression of the 3 × 3 model.)

As mentioned earlier, the 3 × 3 model (Ref 14) was then
simplified (Ref 15) by assuming the gap to be constant, im-
plying that the diagonal gap controller is very tight, and that its
speed of response greatly exceeds that of the dynamics driven
by input melt flow, roller velocity, and the shell-forming pro-
cess. This simplification was supported by time-domain simu-
lations and experiments carried out in a real-time simulator
(Ref 16), although the results of the experiments performed for
large signals were consistent with some of the dynamics pre-
viously shown.

Thus, the plant is reduced to the 2 × 2 block diagram shown
in Fig. 7 and has two outputs: (a) roller separation force (F);
and (b) molten steel level (Yl). It also has two inputs: (a) roller
angular velocity (�); and (b) molten steel input flow (qi).

Therefore, the resulting transfer function matrix (TFM) of the
plant G(s) and that used in the rest of the investigation is given
by:

��F�s�

�Yl�s�� = G�s�����s�

�qi�s�� (Eq 13)

where

G�s� = 	 kk�kFk

1 − e−sT

Ts
+ kdy�kkykFk

e−sT

s
kdyqkkykFk

e−sT

s

kdy�

s

kdyq

s



Note that the TFM G(s) has been derived for the special case
of the feedback parameter kdYY � 0.

Note also that the stopper valve dynamics for feeding the
molten steel are not considered. The reason for this is that they
are basically unknown. Therefore, for control design it is im-
portant to study the control inputs, because the actuator de-
mands might be unachievable. However, some work on stopper
valves has been reported that may be considered for future
work (Ref 7).

4.1 Impact of the Controlled Variables on Strip Quality

The quality specifications are usually given in terms of
thickness (which has to be within some tolerance), mechanical
properties (which depends on the solidification process), and
surface smoothness. It is possible to identify the factors that
influence the strip quality. Strip thickness is influenced by: (a)
fluctuations in the input flow rate (Ref 24); (b) contact time

Fig. 4 Block diagram of the roller geometry

Fig. 5 Simulation diagram of the linearized hydraulic system
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(Ref 25, 26), which depends on roller velocity, pool level, and
meniscus (Ref 27); and (c) melt superheat (Ref 28).

The solidification process, and therefore the microstructure
and the mechanical properties, are dependent on (a) contact
time (Ref 27), (b) melt superheat (Ref 28), (c) pool level (Ref
29) (work on heat transfer modeling assuming that a constant
pool level has been performed) (Ref 13); (d) input flow (Ref
26); (e) strip thickness (Ref 27); and (f) heat transfer coeffi-
cient, which can be changed by: casting velocity (Ref 13, 27,
30) and roller separation force (Ref 29).

The strip surface depends on: (a) casting speed (Ref 27); (b)
uneven distribution of mass flow (Ref 31); (c) solidification
process (Ref 28, 32); (d) nonparallel axes of the rollers (Ref
28); and (e) fluctuations in the gap between rollers (Ref 29).

From the survey above, and considering the three controlled
variables of the proposed model (F, Yl, and xg), it can be con-
cluded that a controller based on a model of this type can give
control on the strip quality. As mentioned above, the strip
thickness loop was neglected for the simplified 2 × 2 model.

5. Multivariable Characteristics

5.1 Calibration of the Shell-Growing Process

Before proceeding with the analysis, the shell-growing pro-
cess model (i.e., B) was calibrated using data from a pure static
model that was used in the industrial site. This model has been
used in the plant to estimate some variables for engineering

purposes, and it has been experimentally validated. Therefore,
it is considered that the static model represents the steady-state
behavior of the process quite well.

Table 1 shows the calibration data, Yk, the meniscus (me �
xg + 2xk [xk � thickness at Yk]), and the thickness reduction
percentage (Red%). The intermediate value of casting speed
(25 m/min, � � 0.18 rad/s) was chosen, having B � 0.00247
m/rad. However, due to the low-level conditions, higher cast-
ing speeds were not feasible, keeping xg and F nominal, and
assuming that there are xg and F controllers that will keep them
constant when the level is decreased, so roller speeds will be
decreased. Because of roller curvature, low-level conditions are
more critical than high-level conditions, smaller changes in
input flow cause larger changes in pool level, and therefore in
force.

5.2 Multivariable Poles and Zeros

Note the defined methods to obtain the multivariable poles
and zeros are suitable for rational systems. However, the ap-
plication will proceed, bearing in mind this important limita-
tion. The development of special methods to obtain the multi-
variable poles and zeros of a time-delay system is out of the
scope of the present application-focused investigation. The ra-
tional system definition is used here on the assumption that the
strip caster might be approximated by such a system, at least
over a range of frequencies.

The Smith-McMillan form of the strip caster, denoted by

Fig. 6 Block diagram of the full linear plant

Fig. 7 Block diagram of the simplified plant
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GSM, was obtained by the method revised by Maciejowski (Ref
33). It is given by:

GSM�s� =
1

s 	
kdY� 0

0 −
kdYqkk�kFk�1 − e−sT�

kdY�T



As expected, the method based on the minors of the TFM (Ref
34) yields the same results. The determinant of the plant G(s)
is given by:

�G�s��= kk�kFkkdyq

�1 − e−sT�

Ts2

From GSM(s) or |G(s)|, it is possible to see that the poles of
G(s) are those values of s for which the function (1 − e−sT)
approaches infinity as well as the two poles introduced by the
integrators. The zeros of G(s) are those values of s that make
(1 − e−sT) equal to zero.

When � � −�, the function (1 − e−sT) is equal to 1 − � ∠
−j�T. Consequently, G(s) has an infinite number of poles at −�
plus the two poles at the origin introduced by the integrators.
When � � 0 and � � n2�/T, where n is an integer, the
function (1 − e−sT) is equal to zero, and therefore G(s) has an
infinite number of zeros on the j�-axis for every � � 2�/T,
including the origin. Both findings are in accordance with the
initial expectations due to presence of the delays.

The presence of the zeros on the j�-axis (assuming that the
methods are valid for the model of the strip caster presented
here) may cause a limitation on performance, because for cer-
tain directions of the input at the frequencies where the zeros
are located, the gain is zero. Limitations on performance are
also expected due to the presence of the time delays (Ref 34).

5.3 Interaction Levels

As mentioned earlier, the TFM (Eq 13) was found to be
highly interactive (i.e., high diagonal dominance ratios) (Ref
33). Row 1 diagonal dominance ratios for two different pool
levels of the scaled plant are depicted in Fig. 8. Row 2 diagonal
dominance ratios are not shown because they are equal to 1 for
all frequencies. Figure 9 shows the column diagonal domi-
nance ratios for two different pool levels.

It can be observed that the largest and most critical of all
these ratios is that of column 2, which corresponds to element
g12, the relationship between roll separation force and pool
level. Although constant, it is considerably larger than unity
(i.e., more than 100%) and increases as the pool level de-
creases. This means that at low pool levels the interaction
between pool level and force is more critical. The dominance
ratio for row 2 is equal to unity (100%) and is also undesirable.
The ratios for row 1 and column 2 seem to be low; however,

they have high-frequency components, which might be diffi-
cult to cope with for a diagonal proportional plus integral plus
derivative (PID) controller. On the other hand, the high-
frequency peaks might be cut off by the simulation software
resolution, being larger than they look in the plot. However, the
row 2 ratio becomes significant for low pool levels, and, aside
from the aforementioned peaks, which reach unity, the lowest
values in between the peaks are 0.1 (10%). Therefore, it can be
concluded that the system is highly interactive and that a di-
agonal controller might not be enough to reject such interac-
tions.

5.4 Singular Values

Figures 10 and 11 depict the singular values and the mini-
mized condition number (i.e., the condition number for the
scaled plant is called the minimized condition number) at two
different pool levels. In the figures, G denotes the scaled plant.
The condition number has been interpreted as robust perfor-
mance sensitive. Plants with large condition numbers are said
to be ill-conditioned plants because they may present difficul-
ties in attaining robustness (Ref 34). The reason for this is that
the lowest singular value [�(G)] might be too small, and, there-
fore, the plant has a low gain for a certain input direction that
is highly sensitive to input direction uncertainties. It should be
noted that the minimized condition number is large for all
frequencies and for both pool levels. This is because �(G) is
small (i.e., <1) for all frequencies. Therefore, it can be con-
cluded that the multivariable model of the strip-casting process
is ill conditioned.

Table 1 Parameter B calibration data

Peripheral speed,
m/min (mm/s) Parameter B

Sheffield model predictions Static model predictions

Yk, mm Red% me, mm Yk, mm Red% me, mm

30 (500) 2.06 5.77 2.089 4.26 5.77 2.089 4.26
25 (416.7) 2.47 9.78 2.255 11.31 11.64 2.361 15.29
20 (333.33) 3.09 14.8 2.58 22.48 16.16 2.697 25.84

Fig. 8 Comparisons among row 1 diagonal dominance ratio, nominal
plant (solid line) and low-fill (25%) operating conditions (dotted line)
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A stability analysis of the simplified 2 × 2 small-
perturbation multivariable model via the characteristic loci can
be found in (Ref 16). It was concluded that the process might
be stabilized with a simple diagonal proportional controller;
therefore, according to the previous multivariable analysis, it
was concluded that the main difficulties with this plant are the
limitation on performance imposed by zeros on the j�-axis, the
interaction levels, and the possible sensitivity to uncertainties,
as shown by the high minimized condition number. The sim-
plified 2 × 2 small-perturbation multivariable model has been
successfully used for the design of several diagonal and mul-
tivariable control systems (Ref 15, 16).

6. Conclusions and Future Work

After linearization around an operating point, a 3 × 3 small-
perturbation multivariable model of the twin-roller strip caster
that is suitable for control design was obtained. This model

captures the dynamic characteristics of the process (i.e., inter-
actions, time delays, and nonlinearities) when studying differ-
ent operating points. The controlled variables proposed in the
model influence the factors that govern the strip quality.

The 3 × 3 TFM was simplified into a 2 × 2. The multivari-
able poles and zeros of the 2 × 2 TFM have been obtained via
the Smith-McMillan method, assuming that a rational approxi-
mation of the strip caster is possible. The presence of time
delays and zeros on the j�-axis may cause limitations on per-
formance.

The plant was found to be highly interactive via the diago-
nal ratios of the multivariable models. On the other hand, due
to the high minimized condition number and the low singular
value of �(G) for two different pool levels, the plant can be
considered to be ill conditioned, and, hence, it is expected to
present problems for attaining robustness.

Fig. 9 Comparisons of the column diagonal dominance ratio, nomi-
nal plant (solid line), low-fill (25%) operating conditions (dotted line):
(a) column 1; and (b) column 2

Fig. 10 �(G) (solid line), �(G) (dotted line), and minimized cond(G)
(dashed-dotted line)

Fig. 11 �(G) (solid line), �(G) (dotted line), and minimized cond(G)
(dashed-dotted line), for the low-fill (25%) operating point
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Appendix A. Approximate Analytic Solution for
Steady-State Kiss Height

In the steady state, the shell thickness partial differential (Eq
1) can be written as:

�r

�	
= −b

r = −b	 + c

where c is a constant.
Applying the boundary condition at the molten surface, r =

R, at 	 � 	l, gives the constant c as:

c = R + b	l

Substituting conditions at the kiss point:

rk =
d

cos 	k

where d = R +
xg

2

and using Taylor approximation for cos 	k, gives

d

1 −
	k

2

2

= −b	k + c

and because 	k « 1.0, then

d�1 −
	k

2

2 � ≈ −b	 + c

Rearranging gives a quadratic polynomial in 	k,

d

2
	k

2 + b	k + �d − c� = 0

Solving gives:

	k =
−b � �b2 − 2d�d − c�

d

Then, the kiss height, Yk, is given by:

Yk ≈ d	k = −b + �b2 − 2d�d − c�

Substituting for d, and c gives

Yk ≅ −b +�b2 + 2�R +
xg

2 ��b	l −
xg

2 �
Thus, proving Eq 3.

Appendix B. Approximate Relation Between Solid
Thickness and Height in the Nip Region

Consider the portion of the nip region, as illustrated in Fig.
1 and Fig. B1.

The relationship between x (and hence between the width
xk � 2 x + xg) and the height y (and Yk) can be derived by
straightforward trigonometry:

tan 	 = x�y

where y is the height from the roller equator to a given point
within the nip region, and x is as given in Fig. B1.

Also, tan 	 � DA/CD or sin 	 � DA/R

2DA = �x2 + y2

sin 	 =
�x2 + y2

2R

cos 	 =
�4R2 − �x2 + y2�

2R

Fig. B1 Trigonometry for the derivation of the relationship between solid thickness and height within the nip region
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tan 	 =� x2 + y2

4R2 − �x2 + y2�

x2

y2 =
x2 + y2

4R2 − �x2 + y2�

Now let X � x2, Y � y2 and 4R2 � Z

X

Y
=

X + Y

Z − �X + Y�

X2 + X�2Y − Z� + Y2 = 0

X =
− �2Y − Z� � �Z2 − 4YZ

2

substituting the original variables and after simplification it is
obtained:

x2 = 2R2 − y2 � 2R�R2 − y2

If y � 0, then x2 � 2R2 ± 2R2, x � 0 or 2R, which is not
possible; therefore, the negative sign is the practical solution:

� x

R�2

= 2 − � y

R�2

− 2�1 − � y

R�2

Considering the following equation:

w = 2 − u − 2�1 − u

where w = �x�R�2 and u = �y�R�2

let f�u� = 2�1 − u

now
df

du
= −

1

�1 − u

d 2 f

du2

=
1

2�1 − u�1.5

then:

df

du�
u=0

= −1
d 2 f

du2�
u=0

= −
1

2

using Taylor’s theorem,

f�u� ≅ f�0� +
df

du�
u=0

u +
1

2

d 2 f

du2�
u=0

u2

it can be expressed as:

f�u� ≅ 2 − u −
u2

4

Thus

w ≅
u2

4

and hence:

� x

R�2

≅
1

4 � y

R�2

and x ≅
y2

2R

With this, the approximate relationship between the solid
thickness and height in the nip region is demonstrated.

Appendix C. Approximate Relation Between Roll
Separation Force and Kiss Height

If xg « xk, 	k « 1.0, and hence, cos 	 ≈ 1 (Fig. 2 and B1), Eq 6

F = L��
0

	k
2�xk − x�

�xg + 2xk�
R cos 	d	

can be approximated by:

F ≈ L��
0

	k
2�xk − x�

xg
Rd	

because from the relation between the solid thickness and kiss
height: xk ≅ Yk/R and x ≅ Y/R, then:

F ≈
L�

xg
�

0

Yk
�Y k

2 − y2�

R
dy

now integrating between limits Eq 8 is obtained.

Appendix D. Partial Derivative for the
Small-Perturbation Model

kk� =
�Yk

��
=

B

�2

−
�2B���xg + 2R�sin−1�Yl

R� + 2B�
2�2�2B��xg + 2R�sin−1�Yl

R� − �2xg
2 − 2R�2xg + 2B2

kkY =
�Yk

�Yl

=
�2B�xg + 2R�

2�	2B��xg + 2R�sin−1 − �2xg
2 − 2R�2xg + 2B2
�R2 − Y l

2�

kFk =
�F

�Yk
=

2�LY k
2

xgR

kFg =
�F

�xg
= −

6�LY k
3

9xg
2R

kdy� =
�Ẏl

��
=

xgR

xg + 2R − 2�R2 − Y l
2
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kdyqi
=

�Ẏl

�qi
=

1

L[xg + 2R − 2�R2 − Y l
2

kdy� =
�Ẏl

�xg
=

�R�xg + 2R − 2�R2 − Y l
2� − qi − �xgR

�xg + 2R − 2�R2 − Y l
2�2

Appendix E. Transfer Function Matrix of the Full
3 × 3 Plant

If the TFM is considered to be of the form:

G�s� =
A�s�

B�s�

where A(s) is a polynomial matrix of numerators and B(s) is
scalar polynomial denoting a greater common denominator.

The TFM can be expressed as:

G�s� =
1

D�s��a11�s� a12�s� a13�s�

a21�s� a22�s� a23�s�

a31�s� a32�s� a33�s�
�

Taking the scalar transfer functions involved in the block dia-
gram given in Fig. 6, and after algebraic manipulation to obtain
a common denominator, the elements of the TFM are given by
the following expressions.

D�s� = s�s�1 − kFgH2�s�� − H2�s�K1e
−sT��s − H2�s��skFg + K1e

−sT��

a11�s� = s�s�1 − kFgH2�s�� − H2�s�K1e
−sT�sH2�s�

a12�s� = s�s − H2�s��skFg + K1e
−sT���kk� + e−sT�kdY�kkY

− kk � ��H2�s�kFk a13�s�

= s�s − H2�s��skFg + K1e
−sT��H2�s�K2e

−sT

a21�s� = s�s�1 − kFgH2�s�� − H2�s�K1e
−sT��skFg + K1e

−sT�H1�s�

a22�s� = s�s − H2�s��skFg + K1e
−sT���kk� + e−sT�kdY�kkY − kk���

a23�s� = s�s − H2�s��skFg + K1e
−sT��K2e

−sT

a31�s� = s�s�1 − kFgH2�s�� − H2�s�K1e
−sT�H1�s�kdYg

a32�s� = �s − H2�s��skFg + K1e
−sT���skdY��1 − H2�s�kFg�

+ H2kk�kdYgkFk�1 − e−sT��

a23�s� = s�s − H2�s��skFg + K1e
−sT���kdYq�1 − kFgH2�s���

where the parameters are given in Appendix C, K1 � kdYgkkYkFk,
K2 � kdYqkFkkkY, H1 is the hydraulic transfer function xg(s)/
d(s), and H2 is the hydraulic transfer function F(s)/d(s) (Eq 12
and Fig. 5).
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